Dynamic Programming on Broken Profile. Problem "Parquet"¶
Common problems solved using DP on broken profile include:
- finding number of ways to fully fill an area (e.g. chessboard/grid) with some figures (e.g. dominoes)
- finding a way to fill an area with minimum number of figures
- finding a partial fill with minimum number of unfilled space (or cells, in case of grid)
- finding a partial fill with the minimum number of figures, such that no more figures can be added
Problem "Parquet"¶
Problem description. Given a grid of size $N \times M$. Find number of ways to fill the grid with figures of size $2 \times 1$ (no cell should be left unfilled, and figures should not overlap each other).
Let the DP state be: $dp[i, mask]$, where $i = 1, \ldots N$ and $mask = 0, \ldots 2^M - 1$.
$i$ represents number of rows in the current grid, and $mask$ is the state of last row of current grid. If $j$-th bit of $mask$ is $0$ then the corresponding cell is filled, otherwise it is unfilled.
Clearly, the answer to the problem will be $dp[N, 0]$.
We will be building the DP state by iterating over each $i = 1, \cdots N$ and each $mask = 0, \ldots 2^M - 1$, and for each $mask$ we will be only transitioning forward, that is, we will be adding figures to the current grid.
Implementation¶
int n, m;
vector < vector<long long> > dp;
void calc (int x = 0, int y = 0, int mask = 0, int next_mask = 0)
{
if (x == n)
return;
if (y >= m)
dp[x+1][next_mask] += dp[x][mask];
else
{
int my_mask = 1 << y;
if (mask & my_mask)
calc (x, y+1, mask, next_mask);
else
{
calc (x, y+1, mask, next_mask | my_mask);
if (y+1 < m && ! (mask & my_mask) && ! (mask & (my_mask << 1)))
calc (x, y+2, mask, next_mask);
}
}
}
int main()
{
cin >> n >> m;
dp.resize (n+1, vector<long long> (1<<m));
dp[0][0] = 1;
for (int x=0; x<n; ++x)
for (int mask=0; mask<(1<<m); ++mask)
calc (x, 0, mask, 0);
cout << dp[n][0];
}
Practice Problems¶
- UVA 10359 - Tiling
- UVA 10918 - Tri Tiling
- SPOJ GNY07H (Four Tiling)
- SPOJ M5TILE (Five Tiling)
- SPOJ MNTILE (MxN Tiling)
- SPOJ DOJ1
- SPOJ DOJ2
- SPOJ BTCODE_J
- SPOJ PBOARD
- ACM HDU 4285 - Circuits
- LiveArchive 4608 - Mosaic
- Timus 1519 - Formula 1
- Codeforces Parquet